21 de fev. de 2010

1. Breve História da Física

A Física é tanto significante como influente, em parte porque os avanços na sua compreensão foram muitas vezes traduzidos em novas tecnologias, mas também porque as novas idéias na física muitas vezes ressoam com as outras ciências, matemáticas e filosóficas.

Um sistema de divisão da Física pode ser feito, levando-se em conta a magnitude do objeto em análise. A física quântica trata do universo do muito pequeno, dos átomos e das partículas que compõem os átomos; a física clássica trata dos objetos que encontramos no nosso dia-a-dia; e a física relativística /Cosmologia trata de situações que envolvem grandes quantidades de matéria e energia.

Em fins do século XVIII, uma das dificuldades da física consistia na interpretação das leis que governam a emissão de radiação por parte dos corpos negros. Tais corpos são dotados de alto coeficiente de absorção de radiações; por isso, parecem negros para a vista humana.

Até o final do século XIX tudo o que era partícula tinha o seu movimento descrito pela mecânica newtoniana enquanto que a radiação eletromagnética era descrita pelas equações de Maxwell do eletromagnetismo.

O que ocorreu no primeiro quarto do século XX foi que um determinado conjunto de experiências apresentou resultados conflitantes com essa distinção entre os comportamentos de onda e de partícula. Em função de outras experiências que apresentavam resultados igualmente surpreendentes no contexto da mecânica de Newton e do eletromagnetismo de Maxwell, os pesquisadores do começo do século passado se viram obrigados a formular hipóteses revolucionárias que culminaram com a elaboração de uma nova física capaz de descrever os estranhos fenômenos que ocorriam na escala atômica: a mecânica quântica.

Física Moderna é a denominação dada ao conjunto de teorias surgidas no começo do século XX, principiando com a Mecânica Quântica e a Teoria da Relatividade e as alterações no entendimento científico daí decorrente, bem como todas as teorias posteriores. De fato, destas duas teorias resultaram drásticas alterações no entendimento das noções do espaço, tempo, medida, causalidade, simultaneidade , trajetória e localidade.

A mecânica quântica surgiu inicialmente dos trabalhos de Max Planck e de Einstein. Um dos mais importantes problemas de física não resolvidos no final do séc. XIX, era o da radiação do corpo negro. Planck resolve este problema em 1901 utilizando como hipótese ad hoc que a energia deste não tem um espectro contínuo, mas pelo contrário é discreta, ou em outras palavras quantizada. Einstein utiliza esta mesma hipótese para resolver o problema do efeito fotoelétrico em 1905. Mas vai mais longe propondo que esta é na realidade a verdadeira natureza da luz. A essa quantidade discreta de luz se chama quantum de luz ou fóton.

Nasce assim a Mecânica Quântica que será posteriormente desenvolvida pelo trabalho de muitos outros cientistas como Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Einstein, Louis de Broglie, Max Born, Wolfgang Pauli ou Paul Dirac, citando apenas os mais importantes.

A hipótese de que a energia é quantizada permite então resolver muitos dos problemas pendentes da Física do início do séc. XX. Einstein utiliza-a para explicar o calor específico dos sólidos e Niels Bohr para explicar a estabilidade do átomo. O primeiro modelo atômico, chamado modelo de Bohr, é posteriormente melhorado por Sommerfeld e outros cientistas acima referidos dando origem à moderna teoria quântica, com uma formalização em moldes mais rigorosos. Tal desenvolvimento também se deu pelos esforços do matemático John von Neumann.

Dentre esses desenvolvimentos, a teoria quântica abandonou parcialmente a noção de trajetória e da localidade, em função do princípio da incerteza de Heisenberg. Assim tem-se a noção da trajetória, de natureza determinista, substituída pela noção de função de onda, de natureza probabilística. Essa interpretação da função de onda, como medida da potencialidade de localização de uma partícula, foi dada pela análise e correta interpretação de Max Born.

Niels Bohr contribui decisivamente também para esse desenvolvimento ulterior da mecânica quântica. Ele e seus seguidores (incluindo Heisenberg) ajudaram a formar a chamada Interpretação de Copenhague. Nessa interpretação, dá-se a explicação quântica da medida. Uma medida realizada sobre um sistema quântico resulta da interação de um aparelho de medida clássico com um sistema quântico. Como a medida resulta numa certeza sobre um valor de uma grandeza (observável), ao passo que a função de onda representa uma função de probabilidades em termos da posição, significa dizer que o ato de medir implica um colapso da função de onda.

Também em 1905, Einstein publica a teoria da relatividade restrita, nesta a idéia clássica que se tinha da simultaneidade foi abandonada, em decorrência da finitude da velocidade de transmissão das interações eletromagnéticas, que resulta da teoria clássica do eletromagnetismo de Maxwell. A simultaneidade passa a depender do referencial que se está adotando para se analisar uma dada situação física. E assim, a invariância da velocidade da luz (que corresponde precisamente à velocidade de transmissão das interações) implica que as noções de espaço e tempo se mesclam em um novo conceito, o espaço-tempo. Para a teoria da relatividade restrita contribuíram decisivamente também Henri Poincaré, Hendrik Lorentz e Hermann Minkowski. Assim se encerra de modo consistente a teoria da eletrodinâmica clássica. Posteriormente, em 1915, Einstein leva mais longe os conceitos da teoria da relatividade ao generalizar o conceito de finitude da velocidade de transmissão das interações à interação gravitacional. Do desenvolvimento desta idéia resulta a moderna teoria da gravitação, conhecida por teoria da relatividade geral.

É Dirac quem posteriormente formaliza a teoria da Eletrodinâmica Quântica que une de modo consistente a teoria quântica e a eletrodinâmica clássica, baseando-se em trabalho anterior de Oskar Klein, Walter Gordon e Vladimir Fock. As tentativas de lhes juntar também a teoria da relatividade geral foram até hoje infrutíferas, sendo este um dos maiores problemas em aberto da física moderna.

A mecânica quântica descreve, com sucesso, o comportamento da matéria desde altíssimas energias (física das partículas elementares) até a escala de energia das reações químicas ou, ainda de sistemas biológicos. O comportamento termodinâmico dos corpos macroscópicos, em determinadas condições, requer também o uso da mecânica quântica.

Mas por quê não observamos estes fenômenos no nosso cotidiano, ou seja, com objetos macroscópicos? Bem, há duas razões para isso. A primeira é que a constante de Planck é extremamente pequena comparada com as grandezas macroscópicas que têm a sua mesma dimensão. Baseados neste fato, podemos inferir que os efeitos devidos ao seu valor não nulo, ficarão cada vez mais imperceptíveis à medida que aumentamos o tamanho dos sistemas. Em segundo lugar, há o chamado efeito de descoerência. Este efeito só recentemente começou a ser estudado e trata do fato de não podermos separar um corpo macroscópico do meio onde ele se encontra. Assim, o meio terá uma influência decisiva na dinâmica do sistema fazendo com que as condições necessárias para a manutenção dos efeitos quânticos desapareçam em uma escala de tempo extremamente curta.

Entretanto, as novas tecnologias de manipulação dos sistemas físicos nas escalas micro ou até mesmo nanoscópicas nos permitem fabricar dispositivos que apresentam efeitos quânticos envolvendo, coletivamente, um enorme número de partículas. Nestes sistemas a descoerência, apesar de ainda existir, tem a sua influência um pouco reduzida, o que nos permite observar os efeitos quânticos durante algum tempo.

Tudo indica que a mecânica quântica seja a teoria correta para descrever os fenômenos físicos em qualquer escala de energia. O universo macroscópico só seria um caso particular para o qual há uma forma mais eficiente de descrição; a mecânica newtoniana. Esta pode ser obtida como um caso particular da mecânica quântica mas a recíproca não é verdadeira.

Ervin Laszlo escreveu "olhar para o mundo do prisma da ciência moderna não tem sido fácil. Até recentemente, a ciência nos oferecia uma imagem fragmentada do mundo, transmitida por via de compartimentos disciplinares aparentemente independentes. Os cientistas acham difícil dizer o que conecta o universo físico com o mundo vivo, o mundo vivo com o mundo da sociedade, e mundo da sociedade com os domínios da mente e da cultura. Hoje, porém isto está mudando; na linha de frente das ciências um número cada vez maior de pesquisadores estão procurando por uma imagem do mundo mais integrada e unitária. Isso é verdade especialmente no que se refere aos físicos, que estão trabalhando intensamente para criar "grandes teorias unificadas" e " supergrandes teorias unificadas", que relacionam conjuntamente os campos e as forças fundamentais da natureza em um esquema teórico lógico e coerente, sugerindo que eles tem origens em comum.

Um empreendimento particularmente ambicioso veio à tona na física quântica em anos recentes: a tentativa de se criar uma teoria de tudo. Esse projeto se baseia na teoria das cordas e das supercordas ( assim chamadas porque nessas teorias as partículas elementares são concebidas como filamentos ou cordas vibrantes). As teorias de tudo que estão sendo desenvolvidas utilizam matematicas sofisticadas e espaços multidimensionais na tentativa de se descobrir com elas uma única equação-mestra capaz de responder por todas as leis do universo."